Prediction of Friction Coefficient for Ductile Cast Iron Using Artificial Neural Network Methodology Based on Experimental Investigation
نویسندگان
چکیده
The key objective of the present study is to analyze friction coefficient and wear rate for ductile cast iron. Three different microstructures were chosen upon which perform experimental tests under sliding time, load, speed conditions. These specimens perlite + ferrite, bainitic. Moreover, an artificial neural network (ANN) model was developed in order predict using a set data collected during experiments. ANN structure made up four input parameters (namely number, nodule diameter) one output parameter (friction coefficient). Levenberg–Marquardt back-propagation algorithm applied train feed-forward back propagation (FFBP). results experiments revealed that reduced as increased constant load. Additionally, it exhibits same pattern action when test run with heavy load speed. increased, dropped. also show bainite harder wears less quickly than ferrite structure. pertaining showed single hidden layer more accurate double model. highest performance validation stage, however, observed at epochs 8 20, respectively, 0.012346 epoch 20.
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Nanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network
Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...
متن کاملForecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique
Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...
متن کاملPrediction of ultimate strength of shale using artificial neural network
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...
متن کاملInvestigation of Asphaltene Precipitation Using Response Surface Methodology Combined with Artificial Neural Network
The precipitation of asphaltene, one of the components of oil, in reservoirs, transfer lines, and equipment causes many problems. Accordingly, researchers are prompted to determine the factors affecting asphaltene precipitation and methods of avoiding its formation. Predicting precipitation and examining the simultaneous effect of operational variables on asphaltene precipitation are difficult ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app122311916